

## SiFive 2 Series RISC-V Core IP

Drew Barbier - Sr. Product Marketing Manager Date May, 2019





This presentation will introduce the SiFive 2 Series RISC-V Core IP including architecture, configurability, and feature set.

At the end of this presentation you should have a basic understanding of SiFive's 2 Series RISC-V Core IP and know where to go for more information.









May 7th

An Introduction to the **RISC-V Architecture** 



SiFive's 2 Series RISC-V Core IP



From a Custom 2 Series Core to Hello World in **30 Minutes** 





## **How To Ask Questions**





## **SiFive Core IP Overview**





32-bit Embedded Processors



64-bit Embedded Processors



64-bit Application Processors







"SiFive's RISC-V Core IP was **1/3 the power** and **1/3 the area** of competing solutions, and gave FADU the flexibility we needed in optimizing our architecture to achieve these groundbreaking products."

-J. Lee, FADU CEO

"SiFive's **64-bit S Cores** bring their hallmark efficiency, configurability and **silicon-proven** Core IP **expertise** to 64-bit embedded architectures"

-Ted Speers, Head of Product Architecture and Planning, Microsemi, a Microchip Company



### **Product Map**

**E**Cores

**32-bit embedded cores** MCU, edge computing, AI, IoT

**S** Cores

**64-bit embedded cores** Storage, AR/VR, machine learning

**U** Cores

**64-bit application cores** Linux, datacenter, network baseband

#### 7 Series

Highest
performance:
8-stage, dual-issue
superscalar pipeline

**E7 Series** 

> E76-MC Compare to Cortex-R8
Quad-core 32-bit embedded processor

> E76 Compare to Cortex-M7 > S76
High performance 32-bit embedded core High-

S7 Series

> **S76-MC** Compare to Coretex-R8 Quad-core 64-bit embedded processor

> \$76 Compare to Cortex-R8 > U74
High-performance 64-bit embedded core High

**U7 Series** 

**V74-MC** Compare to Cortex-A55 Multicore: four U74 cores and one S76 core

> **U74** Compare to Cortex-A55 High performance Llnux-capable processor

#### 3/5 Series

## Efficient performance:

5-6-stage, singleissue pipeline E3 Series

> E34 Compare to Cortex-R5F E31 features + single-precision floating point

**E31** Compare to Cortex-R5 Balanced performance and efficiency

#### S5 Series

> **S54** Compare to Cortex-R5F S51 features + double-precision floating point

> **S51** Compare to Cortex-R5 Low-power 64-bit MCU core

#### **U5 Series**

> **U54-MC** Compare to Cortex-A53

Multicore application processor with four U54

cores and one S76 core

**> U54** Compare to Cortex-A53 Linux-capable application processor

#### 2 Series

## Power & area optimized:

2-3-stage, singleissue pipeline

#### **E2 Series**

- > **E24** Compare to Cortex-M4F E21 + single-precision floating point
- **E21** Compare to Cortex-M4 E20 + User Mode, Atomics, Multiply, TIM
- > E20 Compare to Cortex-M0+ Our smallest, most efficient core

#### S2 Series

> **S21** No 64-bit Cortex equivalent Area-efficient 64-bit MCU core



## **Standard Cores - Pre-Configured Implementations of a Core Series**















Silicon





25+ Design Wins Since Launching in June 2018

**And Everything In-Between** 





## SiFive Core Designer - Your Interface to SiFive Core IP

## Web-Based Core Configuration Tool

- No on-site tools to install
- No licenses servers to manage
- No complex scripting languages to learn

### Configure, Download, Use

- Intuitive interface allows for easy configuration
- Configured designs are placed into your workspace for download
- Synthesize the RTL, run the testbench, execute your software on the FPGA bitstream





#### **E2 Series Features**

#### The Smallest, Most Efficient RISC-V MCU Family

- E2 Series core architectural overview
  - RV32(E)IMAFC capable core
  - 2-3 stage, optional, Harvard Pipeline
- **Efficient memory accesses** 
  - Ability to add multiple outbound Ports
  - Optional Tightly Integrated Memory (TIM) and Optional Instruction Cache
- First RISC-V core with support for the RISC-V Core **Local Interrupt Controller (CLIC)** 
  - Provides hardware interrupt prioritization and nesting
  - Only 6 cycles to execute the first instruction of IRQ
- **SiFive Custom Instruction Extension (SCIE)** 
  - Easily add support for custom instructions







## S2 Series - Extending the 2 Series to 64-bit



- Very small 64-bit MCU
- Same familiar pipeline and feature set as the the E2 series but now 64-bit
  - 2-3 stage, optional, Harvard Pipeline
  - 64-bit arithmetic operations
  - Double the Load/Store bandwidth
- Easier integration into larger SoCs
  - S2 Series can directly address >32-bit physical address space
- No impact on code size thanks to RISC-V Compressed instructions
  - The RISC-V RV64IC ISA uses the same 16-bit and 32-bit instructions as the RV32IC ISA

#### **No Competitive Equivalents in the Market Today**





## 2 Series Memory Subsystem



#### 2 Core can be configured with 1 or 2 native interfaces

- Choose between performance optimized vs area optimized configurations
- S2 has native 64-bit interfaces for double the Load/Store bandwidth vs the E2

#### Configurable Ports

- Choose architecture, data width, and address map of all ports
- >32-bit addressability with the S2

#### Optional 2x low-latency TIM banks

 Supports parallel access to both TIM banks for 2 cores with 2 bus interface configurations

#### Optional Peripheral Port

 Support for RISC-V Atomic instructions which can be used for single-cycle Read-Modify-Write operations



#### E2M - SiFive's Smallest E2 Core

#### E2M Configuration

- RV32EC Base ISA
  - Reduced integer register file for area optimized implementations
  - Fully supported with SiFive's software development tools
- Area optimized interrupt controller with 16 peripheral interrupts
  - Supports RISC-V Software, Timer, External interrupts in addition to the 16 local peripheral interrupts
- Single 32-bit TileLink Port
- Extremely Small Area
  - 13.5k Gates Core Area; .005mm2 in 28nm
- Without Sacrificing Performance
  - 1.07 DMIPS/MHz



| E2 Min Post-Route Physical Design   |                       |  |  |  |
|-------------------------------------|-----------------------|--|--|--|
|                                     | TSMC 28HPC            |  |  |  |
| Frequency target                    | 50MHz                 |  |  |  |
| Worst Setup Corner                  | ssg_0p81v_m40c_cworst |  |  |  |
| Implementation Details              | 9t; LVT, SVT, UHVT    |  |  |  |
| Core Complex Area (mm²)*            | 0.008                 |  |  |  |
| Core Only Area (mm <sup>2</sup> )** | 0.005                 |  |  |  |

Note: All area and power numbers do not include RAMs

<sup>\*</sup>Core Complex includes the Core plus CLINTinternal bus and ports

<sup>\*\*</sup>Core only includes the core pipeline only



## S21 Standard Core - Tiny, Full Featured, 64-bit MCU



## S21 is a balanced implementation of the S2 Series

- RV64IMAC with Harvard Architecture
- 2x TIM banks
- 64-bit AXI Ports
- Half the area of the S51
  - .035mm2 in TSMC 28nm
- S21 Performance
  - 1.6 DMIPS/MHz
  - 3.2 Coremarks/MHz
  - 850MHz+ at TSMC 28nm at TT 85C corner







## **2 Series Performance Improvements**

#### Dhrystone and CoreMark using GCC



February release of the 2 Series has improved hardware Multiply and Divide





### **E2 Series VS ARM Cortex-M**

#### The E2 Series can be configured to meet your application requirements

# **E2 Series VS ARM Cortex-M Comparison Table**

|                                     | E2 Series<br>Options                                                                          | E20<br>Standard Core       | E21<br>Standard Core                            | Cortex-M0+           | Cortex-M3                            | Cortex-M4                            |
|-------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------|----------------------|--------------------------------------|--------------------------------------|
| Dhrystone (using GCC)               | From 1.07 to 1.47<br>DMIPS/MHz                                                                | 1.2 DMIPS/MHz              | 1.47 DMIPS/MHz                                  | 0.95 DMIPS/MHz       | 1.25 DMIPS/MHz                       | 1.25DMIPS/MHz                        |
| CoreMark (using GCC)                | Up to 3.1                                                                                     | 2.5 CoreMarks/MHz          | 3.1 CoreMarks/MHz                               | 1.8 CoreMarks/MHz    | 2.76 Coremarks/MHz                   | 2.76 CoreMarks/MHz                   |
| Integer Registers                   | 31 Useable, 16 Useable<br>Option                                                              | 31 Useable                 | 31 Useable                                      | 13 Useable           | 13 Useable                           | 13 Useable                           |
| FPU                                 | Optional FPU                                                                                  | None                       | None                                            | None                 | None                                 | Optional                             |
| Hardware Multiply and<br>Divide     | Optional, with configurable performance                                                       | Yes                        | Yes                                             | Slow and Fast Option | Yes, always                          | Yes, always                          |
| Memory Map                          | Customizable                                                                                  | SiFive Freedom<br>Platform | SiFive Freedom Platform                         | Fixed ARMv6-M        | Fixed ARMv7-M                        | Fixed ARMv7-M                        |
| Atomics                             | Optional: RISC-V standard<br>AMO support via Peripheral<br>Port and TIMs                      | No Peripheral Port         | RISC-V AMO standard support via Peripheral Port | None                 | Bit-band and Load/Store<br>Exclusive | Bit-band and Load/Store<br>Exclusive |
| Number of Interrupts                | Up to 1008 peripheral interrupts                                                              | 32                         | 127                                             | 32                   | 240                                  | 240                                  |
| Interrupt Latency into C<br>Handler | 6 Cycles – CLIC Vectored<br>Mode                                                              | 6 Cycles                   | 6 Cycles                                        | 15 Cycles            | 12 Cycles                            | 12 Cycles                            |
| Memory Protection                   | Optional up to 16 Regions                                                                     | N/A                        | 4 Regions                                       | Optional, ARMv6m     | 0 or 8 Region                        | 0 or 8 Region                        |
| Tightly Integrated Memory           | Optional 2 Banks                                                                              | None                       | 2 Banks                                         | No                   | No                                   | No                                   |
| Bus Interfaces                      | Configurable: Up to 3 masters<br>and 1 slave with support for<br>TileLink, AXI, AHB-Lite, APB | 1 Master                   | 2 Master, 1 Slave                               | 1 AHB-Lite           | 3 AHB-Lite                           | 3 AHB-Lite                           |



## **2 Series Feature Details**





## **RV32E - Reduced Integer Register File**

## 2 Series now supports the RISC-V Embedded ISA; RV32E

- Reduces integer register file from 32 to 16 general purpose registers
- Can be combined with existing supported extensions:
   M, A, F, C
- Up to a 25% area reduction depending on the core configuration
- Minimal impact on benchmarks
  - Only a 6% impact on Dhrystone for the E20
- Fully supported in SiFive tools and software
  - RV32E supported in SiFive's latest toolchain distribution
  - RV32E support added to Freedom E SDK and Freedom Metal
  - No changes necessary in C code

| Register | ABI Name   | Description                      | Saver  |
|----------|------------|----------------------------------|--------|
| х0       | zero       | Hard-wired zero                  | -      |
| x1       | ra         | Return address                   | Caller |
| x2       | sp         | Stack pointer                    | Callee |
| х3       | gp         | Global pointer                   | -      |
| x4       | tp         | Thread pointer                   | -      |
| x5-7     | t0-2       | Temporaries                      | Caller |
| x8       | s0         | Saved register                   | Callee |
| x9       | <b>s</b> 1 | Saved register                   | Callee |
| x10-11   | a0-1       | Function Arguments/return values | Caller |
| x12-15   | a2-5       | Function arguments               | Caller |

**RV32E ABI** 



## **Optional M and F Extensions**

- Optional "M" extension with configurable performance
  - Pipelined multiplier for efficient performance
  - 4 and 8 cycle multiplier options for area sensitive applications
  - Option to remove the multiplier for extreme area constrained applications
- Adding the "M" extension to the 2 Series includes an area efficient hardware Divide
  - 1 bit per cycle divide with early out
- Optional "F" extension adds fully pipelined single-precision FPU
  - IEEE 754-2008 compliant FPU
  - Features: Fused-Multiply-Add, iterative divide and sqrt, magnitude comparators, float to integer converters, subnormal support
- D extension is coming soon to the 2 Series



## **Choose the Right Interrupt Controller for Your Application**

## Area Optimized (CLINT)

- Simple controller allowing for up to 16 or 48 peripheral interrupts depending on XLEN
- Fixed priority scheme
- Support for software handler and limited vectoring capability

## Feature Optimized (CLIC)

- Featurefull controller allowing for up to 1008 peripheral interrupts
- Hardware prioritization, nesting, and vectoring
- Configurable number of priority bits



#### **CLINT Controller**

## Use the CLINT when optimizing for area over interrupt latency and features

- E2 supports 16 CLINT interrupts, the S2 supports 48 CLINT interrupts
  - In addition to the architecturally defined Software, Timer, and External interrupts
- CLINT Interrupts have a fixed priority scheme
  - The higher the Interrupt ID, the higher the Priority
- Optional Interrupt Vectoring
  - Vector table contains jump instructions directly to C Code handlers
- Highest number interrupt is highest priority and special due to its position in the vector table
  - No additional jump necessary
  - Handler code can begin executing immediately and does not need to jump to a handler



Vector Table w/ 16 Local Interrupts mtvec + (4\*Exception Code)



## **Core Local Interrupt Controller (CLIC)**

- Simplified interrupt scheme which allows for low latency interrupt servicing, hardware prioritization, and pre-emption
  - Support for up to 1008 peripheral interrupts
  - Global programmable prioritization of all interrupts including software and timer
  - PLIC for global interrupts shared with other cores in the Core Complex
- Extreme low latency
  - **6 cycles** into first instruction of ISR, **18 cycles** total to complete a simple ISR in a 2 Series Pipeline
  - Vector table contains function pointers (addresses) to ISR
- Interrupt pre-emption capabilities
  - Up to 256 levels of nesting, and programmable priorities within each level
- Easy to use programmers model
  - GCC interrupt function attribute, no assembly necessary
  - Multiple SW interrupts with programmable priority levels
  - CLIC driver and ISR included in SiFive software deliverables







## **Preemptible Compiler Interrupt Attribute**

- Extends the *interrupt* function attribute to support CLIC Vectored Mode preemptible interrupts
  - Saves mcause and mepc and re-enables interrupts
- Handlers using this attribute will be preempted by interrupts of higher levels

#### Interrupt handler with interrupt("SiFive-CLIC-preemptible") attribute

```
void mti handler(void)
attribute((interrupt("SiFive-CLIC-preemptible"));
void mti handler()
    //C Code Handler
//install machine timer handler into the vector table
vect table[7] = mti handler;
//write Base handler address to mtvec and set CLIC Vectored Mode
write csr(mtvec, ((unsigned long)&handle trap | CLIC VECTORED));
//point mtvt to the vector table
write csr(mtvt, vect table));
```



## RISC-V Interrupt System Architecture (M-mode only example)





## **Physical Memory Protection (PMP)**

- Can be used to enforce access restrictions on less privileged modes
  - Prevent Supervisor and User
     Mode software from accessing unwanted memory
- Up to 16 regions with a minimum region size of 4 bytes
- Ability to Lock a region
  - A locked region enforces permissions on all accesses, including M-Mode
  - Only way to unlock a region is a Reset



Can define entire address map as not accessible to U-Mode in 1 register





## 2 Series µInstruction Cache Option



# The SiFive 2 Series μI-Cache enables Fast and Efficient accesses to slow memories

Flushable with RISC-V FENCE.I instruction

#### Cache Details

- Cache size 1kB to 16kB
- Configurable cache line size

## Configurable Cacheable Address Range

- Software defined "cacheable region".
   Programmed using NAPOT base and sizes similar to PMP region registers.
- Cache enable/disable register



#### **ECC** and the Bus Error Unit

#### All SiFive cores have optional ECC capabilities

- Single Error Correct, Double Error Detect (SECDED)
- Supported on 2 Series TIMs

#### • Bus Error Unit can be used to record and report ECC errors

- Per-processor unit
- Tracks and reports ECC events as well as bus errors
- Can optionally generate interrupts on events

#### • Single Bit Errors

- I\$ the error is corrected and the cache line is flushed
- Single bit errors are written back to the RAM
- Toggles the err\_from\_tile\_X signal for system level tracking

#### Double bit errors

- Double bit errors are reported at the Core Complex boundary via the signal: halt from tile X
- halt\_from\_tile\_X remains high until reset





## **SiFive Custom Instruction Extension (SCIE)**

- The SCIE creates a Verilog black box for your custom instruction
  - A simple pre-defined interface and is the same across the entire SiFive product portfolio
  - Custom Instructions can be created in Verilog with an existing EDA flow
- The SCIE allows for operations on the Integer register file
  - rs1 and rs2 are decoded by the core and provided over the SCIE, no register copies necessary
  - rd is used to pass destination register data back to the core
- Tightly coupled to the core
  - Core pipeline handles all hazards
- Flexible custom instruction support
  - Support for 1, 2 cycle instructions







## SiFive Insight - The Fast and Easy Way to See Inside SiFive Core IP

#### All important SiFive IP signals exposed in a single Verilog module

- Logical hierarchy allows for easily discovering signals of interest
- Clear and intuitive signal names
- Signals and hierarchy picked and used by the IP designers

#### • All signals have an English language description

- Documented in each release
- A yaml file is also included in the delivery allowing for easy integration with 3<sup>rd</sup> party tools





## cJTAG Support: Available Now

- Optional 2-wire IEEE 1149.7 (cJTAG) interface
- Classic JTAG run control debug with only 2-Wires
  - Perfect for pin constrained designs
- Fully supported by SEGGER JLINK and Olimex probes



cJTAG System Block Diagram



## 2 Series Software development



## SiFive Embedded Software Ecosystem

#### SiFive Freedom Studio

- Eclipse CDT, GNU MCU Eclipse, pre-built GCC, and OpenOCD
- Built on Open Source technology
- SEGGER JLINK Probe and Embedded Studio RISC-V IDE
- Lauterbach Lauterbach TRACE32 for silicon bring up and debug
- IAR IAR Embedded Workbench with SiFive support in development
- Ashling RiscFree C/C++ IDE for development and debug
- Embedded Operating Systems
  - Express Logic Thread X
  - FreeRTOS
  - Micrium μCOS
  - NuttX
  - RIOT
  - RTEMS
  - Zephyr OS
- Imperas Simulation models and tools for early software development
- **UltraSoC** IP and tooling supporting SiFive instruction trace



























## **Open-Source Embedded Tools and Libraries by SiFive**

**Freedom Studio** provides an Eclipse based GUI for developing and debugging Freedom E SDK applications

**Freedom E SDK** provides a command line driven workflow with Examples and Utilities including targets for:

- Standard Core IP Deliverables
- Standard Core FPGA Deliverables
- SiFive Development Boards
- SiFive Core Designer Deliverables

**Freedom Metal** is a library for writing Portable, Bare Metal, software for all SiFive devices

- Freedom Metal BSPs are automatically generated







#### Freedom Metal - A Bare Metal Framework for SiFive Devices

#### Freedom Metal provides:

- A bare-metal C application environment
- An API for controlling CPU features and peripherals
- The ability to retarget to any SiFive RISC-V product

#### Use Freedom Metal for:

- Writing portable hardware tests
- Bootstrapping bare metal application development
- A RISC-V hardware abstraction layer
- And more!
- Targeting Freedom Metal means your software will work on all SiFive devices
  - API Documentation:<a href="https://sifive.github.io/freedom-metal-docs/">https://sifive.github.io/freedom-metal-docs/</a>
- Freedom-E-SDK provides a complete Freedom Metal based CLI workflow
  - https://github.com/sifive/freedom-e-sdk



Freedom Metal BSPs are created for all SiFive RTL deliverables



#### **SiFive Freedom Studio**





## **More Information**



#### Resources

## https://riscv.org/

- RISC-V Specifications
- Links to the RISC-V mailing lists
- Workshop proceedings

#### GitHub

- https://github.com/sifive/
- https://github.com/riscv

## https://www.sifive.com/

- RISC-V IP and Development Boards
- RISC-V Tools
- Forums





#### **3-Part Webinar Series**



An Introduction to the RISC-V Architecture



SiFive's 2 Series Core IP



From a Custom 2 Series Core to Hello World in 30 Minutes





## **Configure a 2 Series Core Now!!!**



https://www.sifive.com/



**Questions?**